

LCD MODULE SPECIFICATION

Customer:	
Model Name:	HC050IG40029-D58V.C
Date:	2022.08.31
Version:	03

Preliminary Specification
Final Specification

Approved by	Comment

Approved by	Reviewed by	Prepared by

Record of Revision

Version	Revise Date	Page	Content
Pre-Spec.01 Pre-Spec.02 Pre-Spec.03	2022.01.20 2022.06.27 2022.08.31	All 2 2	Initial Release Update the PIN Update the PIN
	2022.00.01	2	

1. General Specifications

No.	Item	Specification	Remark
1	LCD size	5.0 inch(Diagonal)	
2	Driver element	a-Si TFT active matrix	
3	Resolution	800×3(RGB) × 480	
4	Display mode	Normally Black, IPS	
5	Dot pitch	0.135(W) ×0.135(H) mm	
6	Active area	108(W) ×64.8 (H) mm	
7	Module size	130.70(W) ×85.80(H) ×4.68(D) mm	Note 1
8	TP Surface treatment	6Н	
9	Color arrangement	RGB-stripe	
10	LCM Interface	Digital	
11	TOUCH Interface	USB	
12	Panel power consumption	TBD	
13	Weight	TBD	

Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

LCM

Pin No.	Symbol	I/O	Function		Remark
1	VDD	Ρ	Power Voltage for digital circuit (VDD5V)		
2	VDD	Ρ	Power Voltage for digital circuit(VDD5V)		
3	VDD	Ρ	Power Voltage for digital circuit(VDD5V)		
4	LVDS EN	Ι	LVDS VCC Power EN(Active High)		
5	GND	Ρ	Ground		
6	GND	Ρ	Ground		
7	RXIN0-	Ι	-LVDS0 differential data input		
8	RXIN0+	Ι	+LVDS0 differential data input		
9	RXIN1-	Ι	-LVDS0 differential data input		
10	RXIN1+	Ι	+LVDS0 differential data input		
11	RXIN2-	Ι	-LVDS0 differential data input		
12	RXIN2-	Ι	+LVDS0 differential data input		
13	GND	Ρ	Ground		
14	GND	Р	Ground		
15	RXCLKIIN-	Ι	-LVDS0 differential clock input		
16	RXCLKIN+	Ι	+LVDS0 differential clock input		
17	RXIN3-	Ι	-LVDS0 differential data input		
18	RXIN3+	Ι	+LVDS0 differential data input		
19	LED EN PWM	Ι	Backlight Power EN(Active High) and PWI	M	
20	NC	Ι	No Connect		

3. Operation Specifications

(Note 1)								
Item	Symbol	Val	ues	TT:4	Remark			
	Symbol	Min.	Max.	Unit				
Supply voltage	V _{DD}	-0.3	5.5	V				
Operation Temperature	T _{OP}	-20	70	°C				
Storage Temperature	T _{ST}	-20	70	°C				
LED Reverse Voltage	VR	-	5	V	Each LED Note 2			
LED Forward Current	IF	-	25	mA	Each LED			

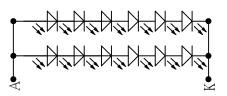
3.1. Absolute Maximum Ratings

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

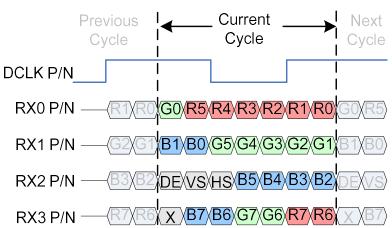
Note 2: VR Conditions: Zener Diode 20mA

Item	Growbal		Values	T Incid	Domonia	
	Symbol	Min.	Тур	Max.	Unit	Remark
Power voltage	V _{DD}	3.5	5.0	5.5	V	Note 2
Current for Driver	IV _{DD}	-	17	25	mA	
Input logic high voltage	V _{IH}	$0.8 \ V_{DD}$	-	V _{DD}	V	Note 3
Input logic low voltage	V _{IL}	0	-	$0.2 V_{DD}$	V	note 3

3.1.1. Typical Operation Conditions

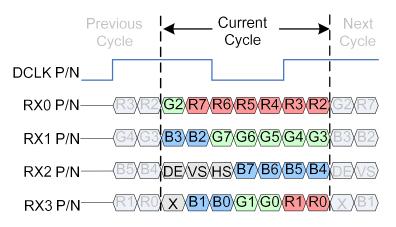

3.1.2. Backlight Driving Conditions

Itom	Symbol		Values	Iit	Remark		
Item	Symbol	Min.	Тур.	Max.	Unit	кетагк	
Voltage for LED backlight	V_{L}	16	18	18.6	V	Note 1	
Current for LED backlight	IL		40		mA		
LED life time	-	-	20,000	-	Hr	Note 2	

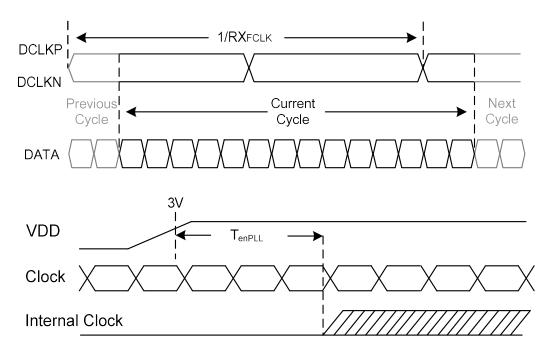

Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 $^\circ\!\mathbb{C}$ and I_L =40mA.

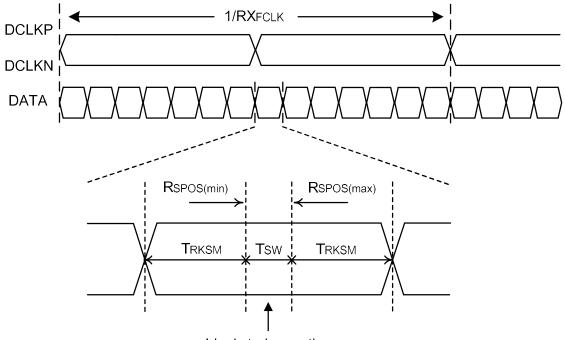
Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and I_L =40mA. The LED lifetime could be decreased if operating I_L is lager than 40mA.

CIRCUIT DIAGRAM(6*2 LED)



3.2. Timing Characteristics




4 Lane VESA Data Format Color Bit Map

4 Lane JEIDA Data Format Color Bit Map

3.2.1 LVDS Input Timing Table

Ideal strobe postion

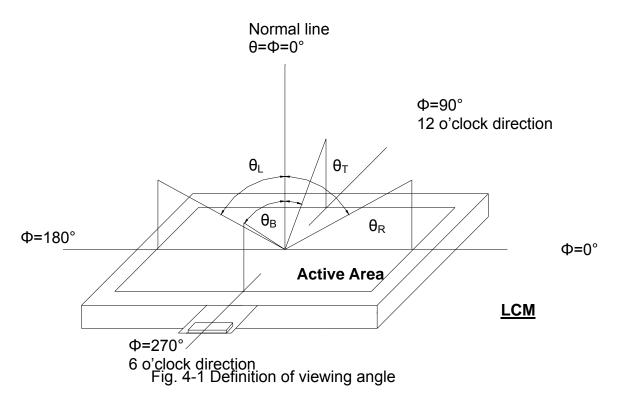
RRKSM: Receiver strobe margin RSPOS: Receiver strobe position Tsw: Strobe width (internal DATA sampling window)

LVDS Input Timing (PVDD=VDD=VDDI= 3.3V, AGND= 0V, TA=25°C)

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions		
Clock Frequency	RX _{FCLK}	23	25	27	MHz			
Input Data Skew Margin	T _{RSKM}	400	-	-	ps			
Clock High Time	T _{LVCH}	4/(7 x RXFCLK)		ns				
Clock Low Time	T _{LVCL}	3/(3/(7 x RXFCLK)					
PLL Wake-up Time	T _{enPLL}	-	-	150	us			
LVDS Spread Sp	LVDS Spread Spectrum Clocking (SSC) Tolerance of LVDS Receiver							
Modulation Frequency	SSCMF	-	-	100	KHz			
Modulation Rate	SSC _{MR}	-	-	+/-3	%			

Note. The maximum RXFCLK Frequency is 27MHz. If the case needs faster RXFCLK, please contact Sitronix first.

Parameter	Symbol	Min.	Typ.	Max.	Unit
Horizontal display area	thd		800		DCLK
DCLK frequency	Fclk	-	33	50	MHZ
1 Horizontal line	th		1056		
HSYNC pulse width	thpw	1		40	
HSYNC Back Porch (blanking)	thb	-	46	_	DCLK
HSYNC front porch	thfp	16	210	354	
Vertical display area	tvd		480		
VSD period time	tv	510	525	650	
VSD pulse width	tvpw	1	_	20	Н
VSD Back Porch (blanking)	tvb	-	23	_	
VSD front porch	tvfp	7	22	147	


4. Optical Specifications

ltem	Symbol	Condition		Values		Unit	Remark	
nem	item Oymbol		Min.	Тур.	Max.	Onic	Kelliark	
	θ∟	Φ=180°(9 o'clock)	-	80	-			
Viewing angle	θ_{R}	Φ=0°(3 o'clock)	-	80	-	degree	Note 1	
(CR≥ 10)	θτ	Φ=90°(12 o'clock)	-	80	-	degree	NOLE 1	
	θ_{B}	Φ=270°(6 o'clock)	-	80	-			
Response time	T _{ON}		-	10	20	msec	Note 3	
	T _{OFF}		-	10	20	msec	Note 3	
Contrast ratio	CR		800	1000	-	-	Note 4	
	W _X	Normal θ=Φ=0°	0.26	0.32	0.36	-	Note 2	
Color chromaticity	W _Y		0.28	0.34	0.38	-	Note 5 Note 6	
Luminance with CTP				300		cd/m2		

Test Conditions:

- 1. V_{DD} =3.3V, I_L=40mA (Backlight current), the ambient temperature is 25°C.
- 2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range

Note 2: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1° /Height: 500mm.)

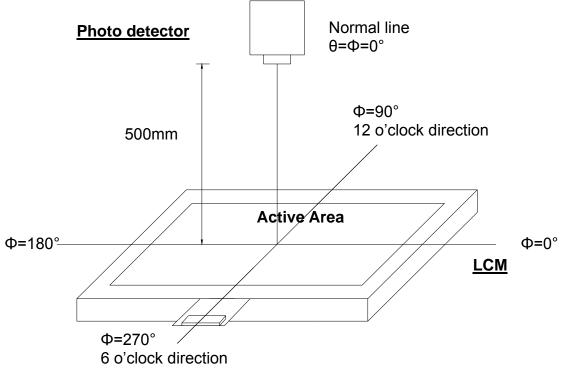


Fig. 4-2 Optical measurement system setup

Note 3: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

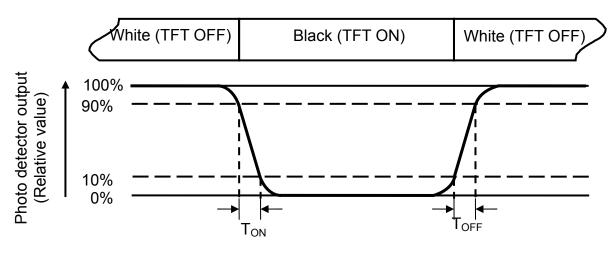


Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD on the "White" state}{Luminance measured when LCD on the "Black" state}$

- Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.
- Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is I_L =40mA.

Note 7: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area.

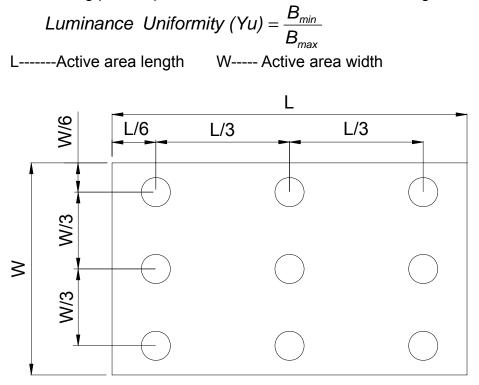


Fig. 4-4 Definition of measuring points

 \mathbf{B}_{max} : The measured maximum luminance of all measurement position. \mathbf{B}_{min} : The measured minimum luminance of all measurement position.

5. Reliability Test Items

(Note3)			
Item	Test Conditions		Remark
High Temperature Storage	Ta = 70°C	240hrs	Note 1, Note 4
Low Temperature Storage	Ta = -20 ℃	240hrs	Note 1, Note 4
High Temperature Operation	Ts = 70 ℃	240hrs	Note 2, Note 4
Low Temperature Operation	Ta = -20℃	240hrs	Note 1, Note 4
Operate at High Temperature and Humidity	+60℃, 90%RH	240hrs	Note 4
Thermal Shock	-10°C/30 min ~ +60°C/30 min for a total 100 cycles, Start with cold temperature and end with high temperature.		Note 4
Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X. Y. Z. (6 hours for total)		
Mechanical Shock	100G 6ms, \pm X, \pm Y, \pm Z 3 times for each direction		
Package Vibration Test	Random Vibration : 0.015G*G/Hz from 5-200HZ, -6dB/Octave from 200-500HZ 2 hours for each direction of X. Y. Z. (6 hours for total)		
Package Drop Test	Height:60 cm 1 corner, 3 edges, 6 surfaces		
Electro Static Discharge	\pm 2KV, Human Body Mode, 100pF/1500Ω		

Note 1: Ta is the ambient temperature of samples.

Note 2: Ts is the temperature of panel's surface.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

Note 4: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

6. General Precautions

6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water.

6.2. Handling

1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.

2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.

3. To avoid contamination on the display surface, do not touch the module surface with bare hands.

4. Keep a space so that the LCD panels do not touch other components.

5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.

6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.

7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

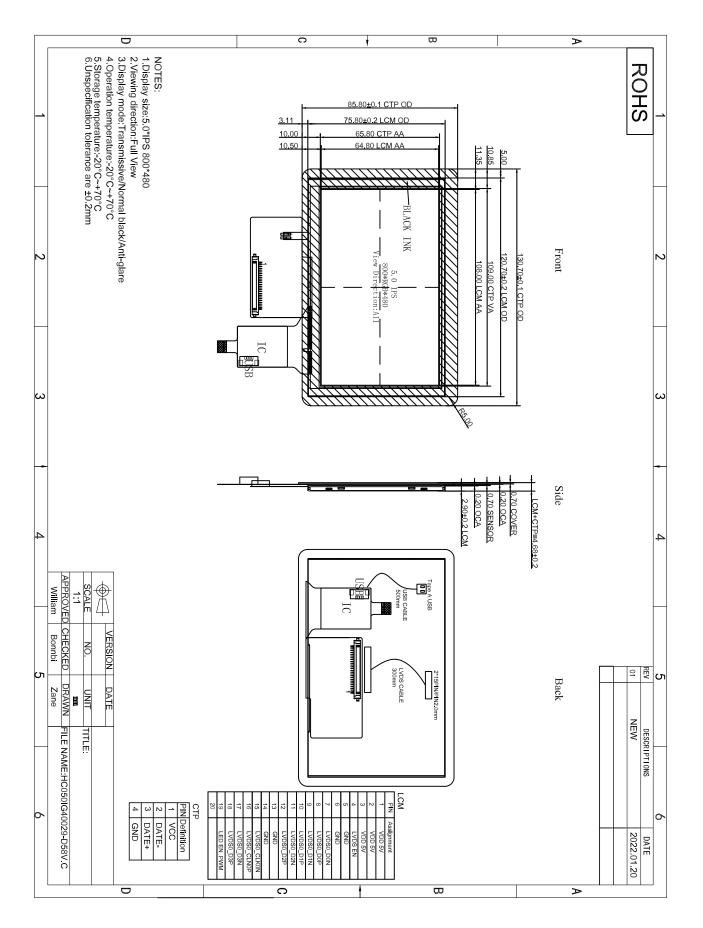
6.3. Static Electricity

1. Be sure to ground module before turning on power or operating module.

2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

1. Store the module in a dark room where must keep at $25\pm10^\circ\!\mathbb{C}$ and 65%RH or less.


2. Do not store the module in surroundings containing organic solvent or corrosive gas.

3. Store the module in an anti-electrostatic container or bag.

6.5. Cleaning

- 1. Do not wipe the polarizer with dry cloth. It might cause scratch.
- 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7.Mechanical Drawings

